BIHAR RE Resource Assessment (Solar and Biomass)

Dr. Sudhir Kumar Chief Executive Green Energy Solutions, Pune Mob: +91 96650 20206 drsudhirkumar@wisein.org

Renewable Energy Sources

- Wind Energy
- Solar Energy
 - » Solar Photovoltaic
 - » Solar Thermal
- Small Hydro (<25 MW)</p>
- Biomass Energy
- Wave/Tidal Energy
- Geothermal Energy

Renewables Suitable For Bihar

- Wind Energy: Large Grid-No Potential, Off-grid: Low Potential
- Solar Energy
 - » Solar Photovoltaic: Grid-Moderate Potential, Off-grid: High Potential
 - » Solar Thermal: Grid-No Potential, Off-grid: Moderate Potential
- Small Hydro (<25 MW): Moderate Potential</p>
- Biomass Energy: Good Potential Grid + Off-grid
- Wave/Tidal Energy: No Potential
- Geothermal Energy: May be. Needs Exploration

Focus: Solar and Biomass

Solar Energy

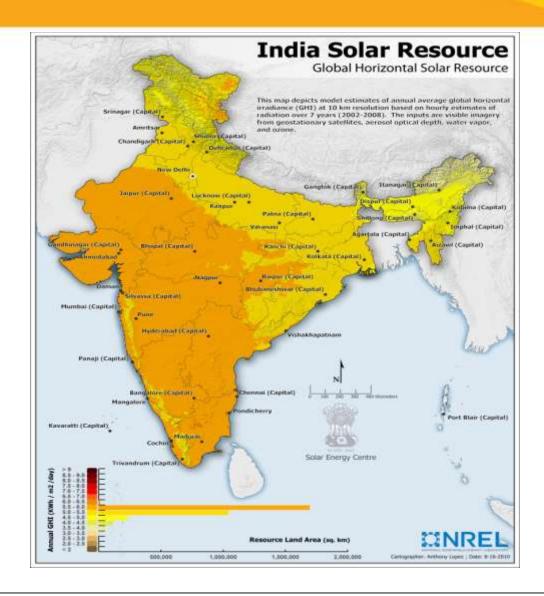
Basics of Solar Energy

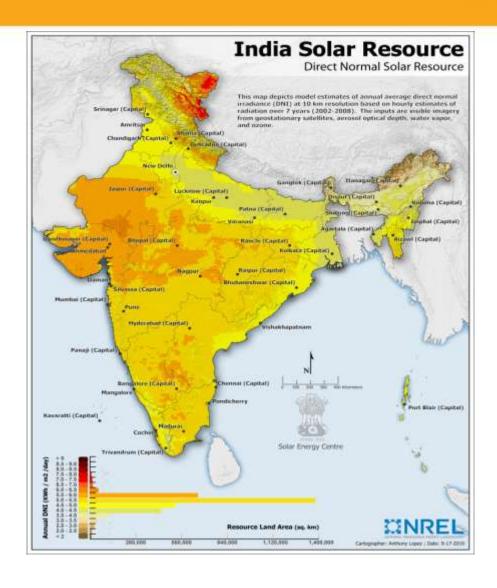
- Electromagnetic radiation emitted by the sun, Diff. wavelengths, Heat, Light & UV
- 1367.7 W/m² outer space, 1000 W/m² on earth surface
- Direct radiation
- Diffuse radiation
- Two together referred as global radiation

Solar Radiation Measurements 1/3

- Global horizontal irradiance (GHI): Pyranometer
- Total: Direct + Diffuse
- Useful for PV

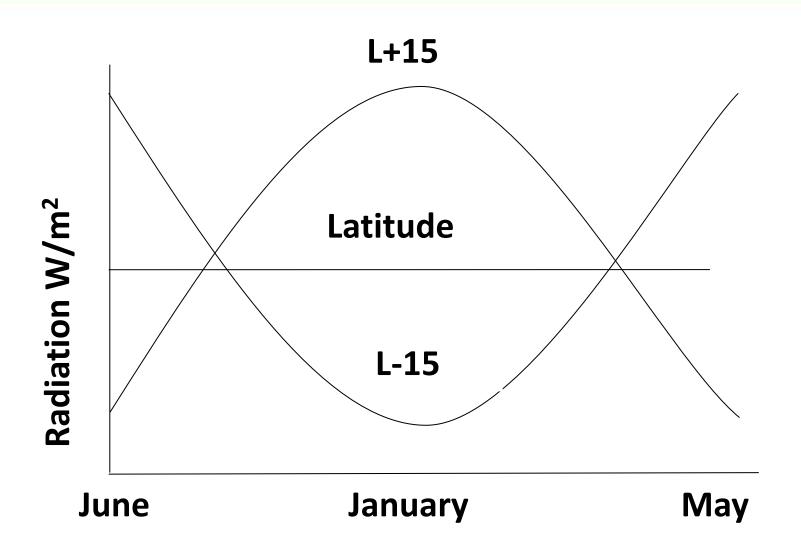
Solar Radiation Measurements 2/3


- Direct Normal Irradiance (DNI): Pyrheliometer
- Direct on perpendicular surface
- Useful for Reflectors, CSP


Solar Radiation Measurements 3/3

- Solar insolation total amount of solar energy received at a particular location during a specified time period
- Unit kWh/m²/day
- Power project :
 - » CSP min. 1800 kWh/m²/yr (Reported)
 - » SPV min. 1500 kWh/m²/yr (Suggested)
- Micro-grid: No standard
- Actual ground data: Not always available
- Derived data: NASA, METONORM, GeoModel

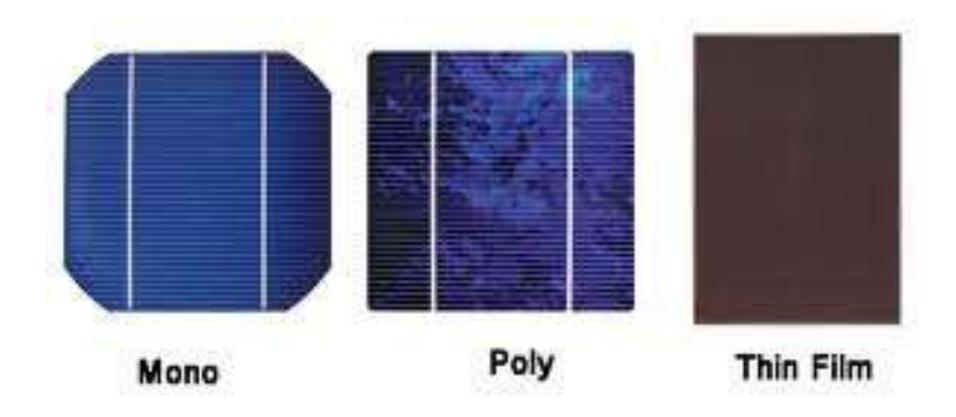
Solar Radiation Map 1/2


Solar Radiation Map 2/2

Solar Technology Options

- Solar Photovoltaic Electricity Generation
 - » Convert sunlight falling on PV cell into D.C. electricity
- Solar Thermal Electricity Generation
 - » Solar energy is focused through mirrors to heat working fluid
 - » Heated working fluid produce steam
 - » drive a turbine-generator to produce electricity

Winter or Summer Optimization


Solar Photovoltaic Technologies

Types of PV Cells

- Crystalline
 - » Mono-crystalline silicon solar cells
 - » Polycrystalline silicon solar cells
- Thin film
 - » Amorphous silicon
 - » Cadmium telluride
 - » Copper indium di-selenide
- Emerging technologies
 - » Gallium arsenide
 - » Organic semiconductors
 - » Dye-sensitized cells
 - » Nanotechnology solar cells
 - » Comparison Study:
 - http://www.wisein.org/pdf/PV Due Diligence

14

Types of PV Cells

Mono-crystalline Silicon Solar Cells

Majority solar cells manufacturers

- Input material SiO₂
- Principle of Czocharalski process

Practical efficiencies - 14 to 17%

Polycrystalline Silicon Solar Cells

Second most common natural substance

Manufacturing process - simpler and cheaper

Casting process

Practical efficiencies - 13 to 15%

Amorphous Silicon Solar Cell

- Requires low process temperature
- Technological capability for large-area deposition exists
- Has low material requirements
- Has larger band gap
- Low energy consumption during manufacture, and
- Possibility of automation of the manufacturing process: Commercialized
- Low efficiency 6-9%, faster degradation, light soaking reduction

Cadmium Telluride Solar Cell

- Highest theoretical conversion efficiency
- Energy gap of 1.44 e.v.
- Efficiency 6 to 10%
- Technically best among thin films
- Degradation more than crystalline
- Possibility of production hazards
- Environmental pollution
- Commercialized

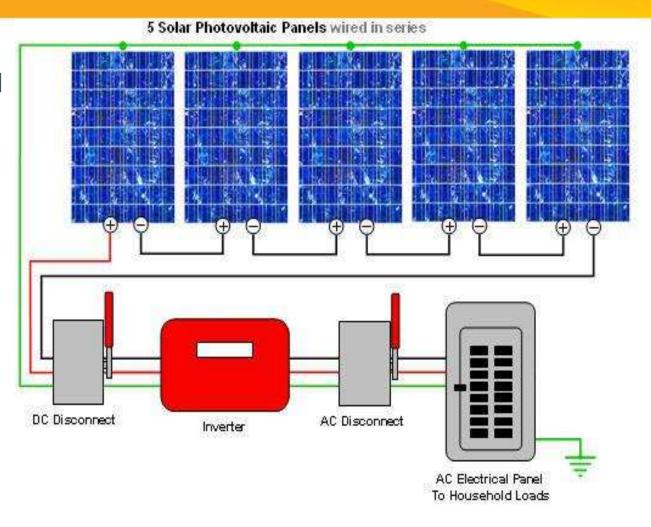
Copper Indium Diselenide Solar Cell

- Ideal material photovoltaic application
- Band gap of 1.53 ev
- Efficiency 11.4%
- Number of alloy components makes the multiple processes extremely complex
- Expensive and rare metals cost of manufacturing increase
- Not commercialized

Gallium Arsenide

Used in space application

High cost


Most efficient solar cell

Cell efficiencies -about 30 to 34%

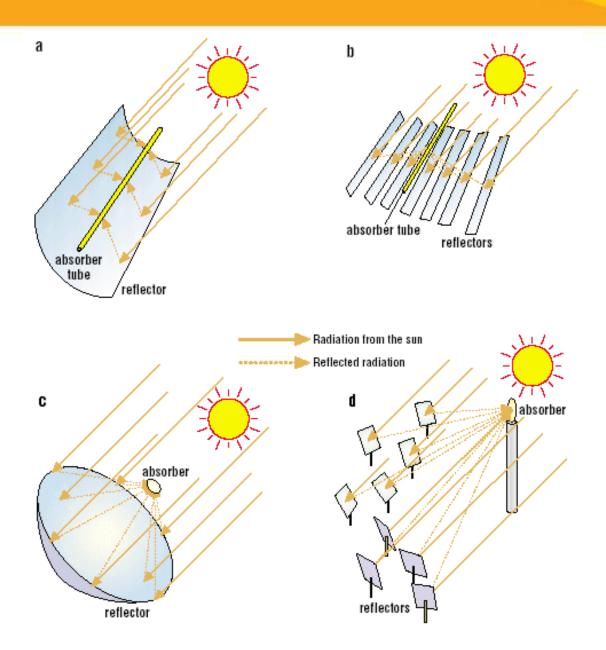
Too expensive for terrestrial applications

Suitability for Micro-grid Applications

- Use the polycrystalline SILICON modules solely because
 - » Slight cost advantage,
 - » Relatively easier availability with vendors
 - » Good efficiency
 - » Least degradation
 - » Local availability and
 - » Better life

Photovoltaic Micro-grid

Solar Thermal Technologies


Types of Solar Thermal Technologies

Parabolic trough solar thermal system

 Compact linear fresnel reflector (CLFR) solar thermal system

- Parabolic dish solar thermal system
- Power tower solar thermal system

Types of Solar Thermal Technologies

Parabolic Trough Systems

- Parabolically curved, trough-shaped reflectors
- Run in a north-south direction and track the sun from east to west
- Absorber pipes consist of a metal pipe which contains HTF surrounded by a glass pipe
- Hot HTF is used to generate steam
- Steam used to power a steam turbine to turn an electric generator to produce electricity

Parabolic Trough Systems -Andasol, Spain

Parabolic Trough Systems -Andasol, Spain

Compact Linear Fresnel Reflector (CLFR)

- Line focusing system
- Array of nearly flat reflectors
- Flat segments of rectangular shaped mirrors are arranged horizontally in a north-south direction

Track the sun from east to west

CLFR- Kogan Creek, Australia

Parabolic Dish

A parabolic-shaped point focus concentrator

 Reflects solar radiation onto a receiver mounted at the focal point

 Concentrators are mounted on a structure with a two axis tracking system

 Collected heat utilized directly by a heat engine (sterling engine)

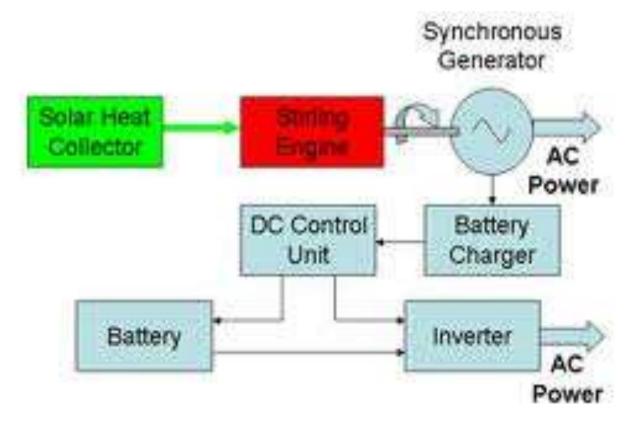
Parabolic Dish

Power Tower

- Called central receivers
- Utilizes a two axis sun-tracking mirrors called heliostats
- HTF heated in the receiver
- Used to generate steam in the steam generator
- Steam is used to power steam power cycle to turn steam turbine to generate electricity

Power Tower- Abengoa, Spain

Power Tower- Abengoa, Spain



Power Tower- Abengoa, Spain

Suitability for Micro-grid Applications

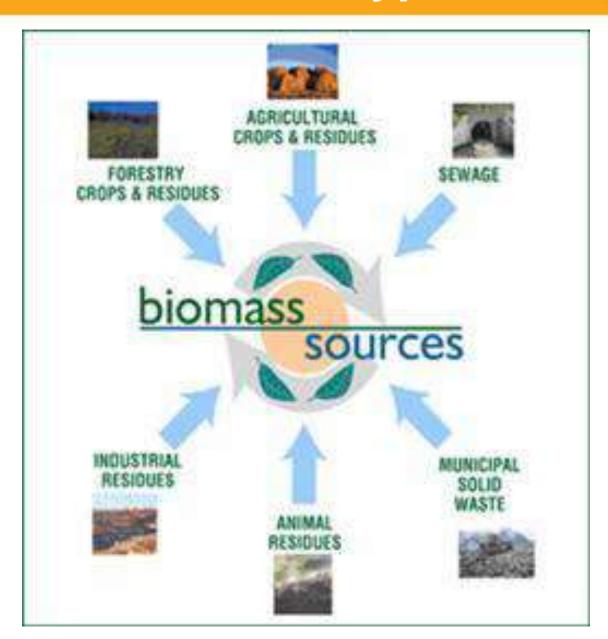
- Parabolic trough systems, CLFR systems & solar tower systems not suitable for small application
- Parabolic dish systems only suitable

Small Scale Electric Power from Solar Thermal Energy

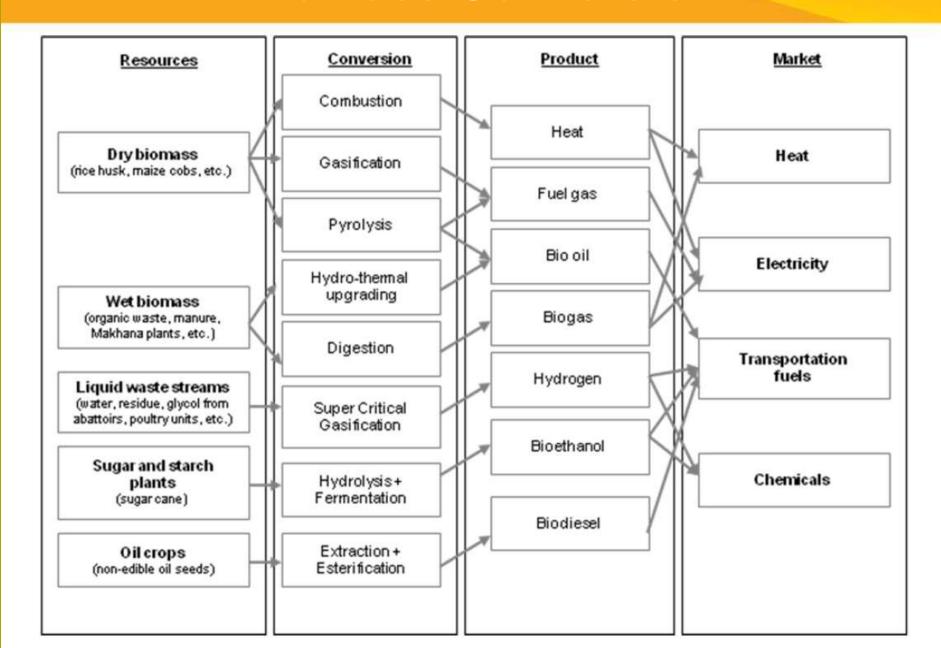
Grid Solar PV Power Potential

Technology	potential with 1% of Utilizable waste land	potential with 2% of Utilizable waste land	potential with 3% of Utilizable waste land
Solar PV (MW)	2564	5128	7692
CSP (MW)	286	571	857
Total (MW)	2850	5699	8549

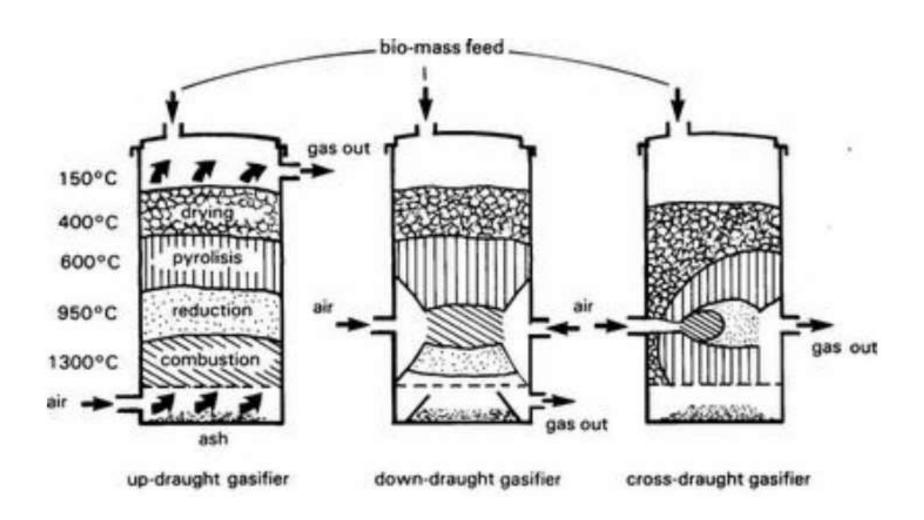
Source: Renewable Energy Potential Assessment of Bihar (WISE Report 2011)

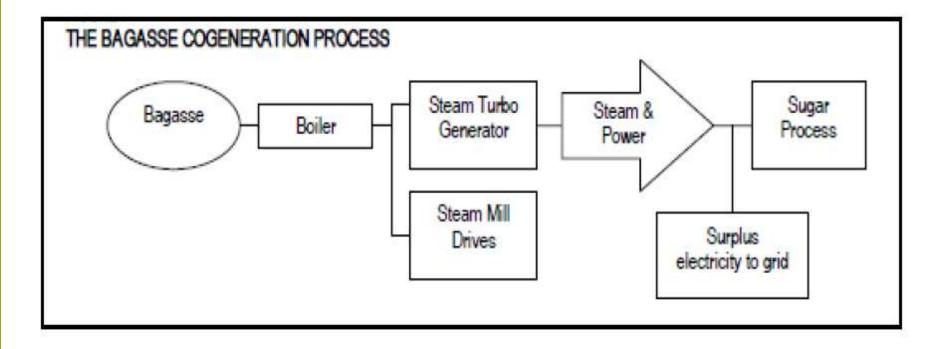

Off-grid Solar PV Potential

Technology	Potential	Unit
Roof-top PV	3936	MWp
SPV pumps	2665	MWp
Solar street lights	282	MWp
Solar powered	472	
hoardings/boards		MWp
Solar power packs	3122	MWp


Source: Renewable Energy Potential Assessment of Bihar (WISE Report 2011)

Biomass Energy


Biomass Types


Biomass Conversion

Biomass Gasifier

Bagasse Gogeneration

Biomass Power Potential

S. No	Energy Source	Power Potential (MW)		
Agro Residues				
1	Rice husk (50% availability)	180		
2	Rice husk (100% availability)	360		
3	Rice straw (50% availability)	1335		
4	Maize cobs (50% availability)	87		
5	Sugarcane bagasse	300		
Sub total		1902 to 2082		
Urban Waste				
6	Municipal Solid Waste (thermochemical conversion)	26		
7	Municipal Solid Waste (biochemical conversion)	17		
8	Municipal Liquid Waste (Class I & Class II Cities)	21		
Sub total		38 to 47		
Other Industrial Wastes				
9	Distillery (spentwash)	13		
10	Dairy (washings, whey)	0.2		
11	Sugar (waste water, pressmud)	4.6		
Sub total		17.8		
Total		1950 to 2150		

THANK YOU

World Institute of Sustainable Energy 44, Hindustan Estate, Road No.2, Kalyani Nagar, Pune- 411 006

Tel: +91 20 2661 3832/55 Fax: +91 20 26611438

Email: cse@wisein.org

Website: www.wisein.org